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Abstract. Using recently obtained deterministic results as a benchmark, probabilistic slope stability analyses have been 
performed on an undrained slope using the random finite element method (RFEM). Non-stationary random fields have been 
generated with linearly increasing mean undrained strength and a constant coefficient of variation. The influence of input spatial 
correlation and variance on the probability of slope failure in a test example is reported, and particular attention is drawn to the 
solutions corresponding to extreme values of the spatial correlation length. 
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1. Introduction 

In the world of probabilistic geotechnical 
analysis, it seems likely that slope stability 
analysis has received more attention than any 
other application. A very significant bibliography 
is now available which is too extensive to 
mention here, but important early contributions 
in the 1970s include those of Matsuo and Kuroda 
(1974), Alonso (1976), Tang et al. (1976) and 
Vanmarcke (1977). Research from the University 
of New South Wales group deserves special 
mention including that of Mostyn and Li (1993) 
from which the title of this session, namely 
“Probabilistic Slope Stability Analysis: The State 
of Play” was borrowed. Recognition of the 
importance that statistical approaches might play 
in geotechnical analysis goes back much further. 
In his foreword to the inaugural issue of the 
journal Géotechnique in 1948, Karl Terzaghi 
talked about soil properties varying “…from 
point to point.” Probabilistic tools have 
subsequently been developed ranging from event 
trees to first order reliability and moment 
methods (e.g. Whitman 1984, Wolff 1996, 
Lacasse 1994, Christian et al. 1994, Hassan and 
Wolff 2000, Duncan 2000).  

It is only quite recently however, that 
Terzaghi’s observation of spatially varying soil 

properties has been tackled explicitly by the 
Random Finite Element Method (RFEM). In the 
work of Griffiths and Fenton (2000, 2004), slope 
stability analyses were presented using elastic-
plastic RFEM. The random fields were generated 
using the Local Averaging Subdivision (LAS) 
method (Fenton and Vanmarcke 1990) which is 
able to model spatial variability while properly 
accounting for local averaging over each finite 
element. The deliverable in such an analysis by 
RFEM is the probability of failure as opposed to 
the classical factor of safety. Several papers 
written by the authors have used RFEM to 
considered slopes with stationary random 
properties, however this paper will describe 
some probabilistic analyses of undrained slopes 
with non-stationary random fields, in which the 
mean and standard deviation of soil strength 
increase linearly with depth.  
The general slope geometry and parameters as 
used in this study are shown in Figure 1 together 
with a typical finite element mesh. 
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Figure 1. a) Slope geometry and soil properties b) typical 
finite element mesh. 

 
Figure 1a shows that the mean undrained 
strength is a linear function of depth according to 
the equation 

0uz uc c z� � "� 
                             (1) 

where  
uzc�  is the mean strength at depth z , 

0uc�

is the mean strength at crest level and " is the 
gradient of mean strength. In this study the 
standard deviation of undrained strength is also 
assumed to be a linear function of depth with a 
gradient that results in a constant coefficient of 
variation 

ucv . It can also be noted that the spatial 

correlation length )  is assumed to be constant 
and isotropic in this study. Other parameters 
include the undrained friction angle 0u �  and 
the saturated unit weight � . The slope is inclined 
to the horizontal at angle  , with height H and 
depth ratio to a lower firm layer D .  

2. Random Field Generation with Linearly 
Increasing Mean Strength 

The random field generation is based on the 
RFEM method which is described in detail in 
Fenton and Griffiths (2008). Full source code 
RFEM downloads are available at the web site 
www.mines.edu/~vgriffit/rfem 
 

Initially, a homogeneous, stationary, lognormal 
random field based on the parameters at 0z �  , 
i.e. mean 

0uc� , standard deviation 
0uc' and 

spatial correlation length )  is generated across 
the mesh. The element values are then scaled to 
account for depth 0z F  using 
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Eq. ( ) shows that a quite simple adjustment to 
0c  from the initial stationary random field is 

needed to deliver the non-stationary zc with 
linearly increasing mean strength and constant 
coefficient of variation.. 

An example of some typical simulations are 
shown in Fig.2, for a relatively short spatial 
correlation of 3m) �  

 

 
Figure 2. Three typical simulations of a linearly increasing 
random field � �3m) �   

 
Higher spatial correlation lengths will lead 

to smoother variations with depth, and for a 
typical simulation, few crossings of the linearly 
increasing mean line. 
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Figure 3. Grey-scale representation of a simulated random 
field with linearly increasing strength with depth � �10m) � . 
Dark is stronger, light is weaker. 

 

3. Probabilistic Slope Stability by RFEM 

Following generation of the non-stationary 
random field as described above, a finite element 
slope stability analysis is performed. The finite 
element code is run in a “Fail/No-Fail” mode 
(e.g. Griffiths and Fenton 2004) where each 
simulation of the Monte-Carlo process results in 
a binary result depending on whether the 
algorithm converges within 500 iterations (no 
fail), or hits the iteration ceiling of 500 (fail). 
Although 500 is user- defined and other values 
could be used, it has been determined that 
simulations needing 500O  iterations clearly 
indicate the population of failed slopes. After a 
sufficient number of simulations have been 
performed, the probability of failure fp  is 
simply the number of simulations that indicate 
failure, divided by the total number of 
simulations.  

4. Number of Monte-Carlo Simulations 

The number of Monte-Carlo simulations needed 
to obtain stable output is largely a function of the 
variability of the input. Figure 4 shows the 
probability of failure as a function of the number 
of simulations for a typical slope example. 
Reasonably stable and reproducible results are 
seen to occur when the number of simulations 
reaches 1000simn � . 

 
Figure 4. Check on the number of Monte-Carlo simulations 
needed for statistical stability.  

5. Results of Probabilistic Slope Analysis 

A comprehensive set of analyses and parametric 
studies have been performed on the probabilistic 
slope stability problem with linearly increasing 
mean strength. In the current paper, a slope with 
the geometry and properties given in Table 1 will 
be considered. 
Table 1. Geometry and properties of test slope 

 
 
 
  
 
 

  
 
 
Based on the work of Hunter and Schuster 
(1968), and the more recent refinements of 
Griffiths and Yu (2015), a deterministic analysis 
of the slope indicated in Table 1 would have a 
factor of safety of 1.51FS � , with a critical 
failure circle tangent to a depth ratio of 1.38D � . 
It may be noted that the deterministic critical 
failure mechanism does not go to the full depth 
of 1.5D � , as would be the case for a 20 � P  
slope if uc  was constant. 

 

. 20o 

H 10 m 
D 1.5 

0uc� . 18 kPa 
" .. 2.4 kN/m3 
� .. 20kN/m3 
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Figure 5. Probability of slope failure as a function of spatial 
correlation length and coefficient of variation.  

 
The computed probability of failure by RFEM 
for a range spatial correlation lengths and 
coefficients of variation is given in Fig.5. 

The results show that the probability of 
failure fp  increases with both the coefficient of 
variation 

ucv  and the spatial correlation length ) . 
In this particular example, the highest probability 
of failure corresponds to the highest spatial 
correlation lengths. This is not always the case in 
probabilistic slope stability analysis however, 
where steeper slopes with stationary random 
fields can sometimes indicates a “worst case” 
spatial correlation length of the order of the slope 
height � �H) � (see e.g. Allahverdizadeh 2015). 
It is expected that slopes with linearly increasing 
strength may also exhibit this “worst case” 
phenomenon, which will be explored as part of a 
much broader parametric study. 

Returning to the results of the example 
problem presented in Fig.5, insight into the role 
of spatial correlation on the probability of failure 
can be obtained by considering the limiting cases 
of very small � �0) B  and very large � �) B+
spatial correlation lengths (e.g. Griffiths et al. 
2009). 

5.1. Very Small Spatial Correlation Length 

As 0) B , Median
u uc c� B  and 0

uc' B for all
z  due to local averaging of a lognormal process. 
Each Monte-Carlo simulation is therefore 
essentially identical and deterministic, with an 
adjusted linear strength profile given by  
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Typical values of the adjusted surface value at 

0z �  and strength gradient from Eq.( ) are 
given in Table 2. 
 
Table 2. Deterministic linear strength parameters from Eq.( ) 
for the slope from Table 1 as  0) B   

ucv  � �
0

1 221
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�




(kPa) 
� �1 221

ucv

"




(kN/m3) 

FS fp  

0.0 18.00 2.40 1.51 0 
0.3 17.24 2.30 1.45 0 
0.4 16.71 2.23 1.41 0 
0.5 16.10 2.15 1.35 0 
0.7 14.75 1.97 1.24 0 
0.9 13.38 1.78 1.13 0 
1.1 12.11 1.61 1.02 0 

1.14 11.89 1.59 1.00 1 
1.3 10.97 1.46 0.92 1 

 

It is seen from Table 2 that as the input 
coefficient of variation is increased, the surface 
strength and gradient are proportionately reduced. 
For the cases considered in Fig.5, namely 

0.3,0.4,0.5
ucv � as highlighted in the table, the 

deterministic factor of safety is always greater 
than unity, hence 0fp B . It can also be noted 
from the table however, that as 

ucv is further 
increased, the deterministic factor of safety 
eventually becomes less than unity and 1fp B . 
The sudden switch from 0fp B to 1fp B  
occurs at about 1.14

ucv � which would be 
considered a high variability, even for an 
undrained strength (e.g. Lee et al. 1983). It may 
be noted from Eq.( ) that the extrapolated 
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strength profiles corresponding to different 
ucv  

values all pass through the same point above the 
crest at a height given by 
 

0
ucz

�
"

� �                              ( ) 

 
For the particular slope under consideration the 
common point is at 0 7.5mz � � as shown in Fig.6. 
 

 
Figure 6. Linear undrained strength distributions showing 
transition from safe to unsafe conditions.  

 

5.2. Very Large Spatial Correlation Length 

As ) B+ , each Monte-Carlo simulation gives a 
linearly increasing strength profile, but all 
different to each other. Based on Eq.( ) it can be 
shown that each simulation has a strength profile 
given by 
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where 0uc  is randomly picked from a lognormal 
distribution with mean 

0uc�  and coefficient of 

variation 
ucv . As with Eq.( ), the extrapolated 

strength distributions all pass through the same 
point as given by Eq.( ). 

As shown in Fig. 6 and Table 2, slope failure 
occurs when 0 11.89kPauc � . Since 0uc  is 
lognormally distributed with a mean of 

0
18kPa

uc� �  the probability of failure fp  will 

depend on 
ucv  . 

Take for example, the case in Fig.5 where 
0.5

ucv � . The mean and standard deviation of 
the underlying normal distribution of 0ln uc  are 
given from standard transformations as 
 

W X
� �

0

0

2
lnc

2
ln

ln 1 0.5 0.4724

1ln 18 0.4724 2.7788
2

u
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The probability of failure is therefore given by 
 

� �

� �

2.7788 ln 11.89
1

0.4724

1 0.6416
0.26 (26%)

fp
�� �

� ��� �
� �

� ��

�

           ( ) 

. 
where �  is the cumulative distribution function.  
Similar operation for the cases where 0.4

ucv �

and 0.3
ucv �  lead to 0.19fp �  and 0.09fp �

respectively, which define the asymptotic values 
the results are approaching in Fig.5 as ) B+ . 

6. Concluding Remarks 

The paper has described probabilistic analysis of 
an undrained slope with linearly increasing mean 
strength and constant coefficient of variation.  
In the example presented, the probability of 
failure increased monotonically with the 
coefficient of variation and the spatial correlation 
length of undrained strength. Attention was also 
drawn to probabilistic behavior corresponding to 
extreme values of the spatial correlation length 
where 0) B  and ) B+  enabling validation 
against deterministic values. Results presented in 
this paper form a subset of a much larger 
probabilistic study on undrained slopes with 
linearly increasing strength, which will be 
reported elsewhere. 
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